Cleavage specificity of chloroplast and nuclear tRNA 3'-processing nucleases.

نویسندگان

  • A Oommen
  • X Q Li
  • P Gegenheimer
چکیده

tRNAs in eukaryotic nuclei and organelles are synthesized as precursors lacking the 3'-terminal CCA sequence and possessing 5' (leader) and 3' (trailer) extensions. Nucleolytic cleavage of the 3' trailer and addition of CCA are therefore required for formation of functional tRNA 3' termini. Many chloroplast tRNA genes encode a C at position 74 which is not removed during processing but which can be incorporated as the first base of the CCAOH terminus. Sequences downstream of nucleotide 74, however, are always removed. Synthetic yeast pre-tRNA(Phe) substrates containing the complete CCA74-76 sequence were processed with crude or partially purified chloroplast enzyme fractions. The 3'-extended substrates (tRNA-CCA-trailer) were cleaved exclusively between nucleotides 74 and 75 to give tRNA-COH, whereas a 3'-mature transcript (tRNA-CCAOH) was not cleaved at all. A 5'-, 3'-extended chloroplast tRNA-CAG-trailer was also processed entirely to tRNA-COH. Furthermore, a 5'-mature, 3'-extended yeast pre-tRNA(Phe) derivative, tRNA-ACA-trailer, in which C74 was replaced by A, was cleaved precisely after A74. In contrast, we found that a partially purified enzyme fraction (a nuclear/cytoplasmic activity) from wheat embryo cleaved the 3'-extended yeast tRNA(Phe) precursors between nucleotides 73 and 74 to give tRNA(OH). This specificity is consistent with that of all previously characterized nuclear enzyme preparations. We conclude that (i) chloroplast tRNA 3'-processing endonuclease cleaves after nucleotide 74 regardless of the nature of the surrounding sequences; (ii) this specificity differs from that of the plant nuclear/cytoplasmic processing nuclease, which cleaves after base 73; and (iii) since 3'-mature tRNA is not a substrate for either activity, these 3' nucleases must require substrates possessing a 3'-terminal extension that extends past nucleotide 76. This substrate specificity may prevent mature tRNA from counterproductive cleavage by the 3' processing system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can pseudocomplementary peptide nucleic acid nucleases (pcPNANs) be a new tool for genetic engineering?

Abstract: Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) comprise a powerful class of tools that are redefining the boundaries of biological research. Although these technologies have begun to enable targeted genome modifications, there remains a need for new technologies that are scalable, affordable, and easy to engineer. In this paper, we propose a ...

متن کامل

An RNase P RNA subunit mutation affects ribosomal RNA processing.

RNase P is a ribonucleoprotein endoribonuclease responsible for the 5' maturation of precursor tRNAs in all organisms. While analyzing mutations in conserved positions of the yeast nuclear RNase P RNA subunit, significant accumulation of an aberrant RNA of approximately 193 nucleotides was observed. This abundant RNA was identified as a 3'extended form of the 5.8S rRNA. This strain also display...

متن کامل

Structure, mechanism, and specificity of a eukaryal tRNA restriction enzyme involved in self-nonself discrimination.

tRNA restriction by anticodon nucleases underlies cellular stress responses and self-nonself discrimination in a wide range of taxa. Anticodon breakage inhibits protein synthesis, which, in turn, results in growth arrest or cell death. The eukaryal ribotoxin PaT secreted by Pichia acaciae inhibits growth of Saccharomyces cerevisiae via cleavage of tRNA(Gln(UUG)). We find that recombinant PaT in...

متن کامل

Arabidopsis encodes four tRNase Z enzymes.

Functional transfer RNA (tRNA) molecules are a prerequisite for protein biosynthesis. Several processing steps are required to generate the mature functional tRNA from precursor molecules. Two of the early processing steps involve cleavage at the tRNA 5' end and the tRNA 3' end. While processing at the tRNA 5' end is performed by RNase P, cleavage at the 3' end is catalyzed by the endonuclease ...

متن کامل

Molecular Characterization of Three PRORP Proteins in the Moss Physcomitrella patens: Nuclear PRORP Protein Is Not Essential for Moss Viability

RNase P is a ubiquitous endonuclease that removes the 5' leader sequence from pre-tRNAs in all organisms. In Arabidopsis thaliana, RNA-free proteinaceous RNase Ps (PRORPs) seem to be enzyme(s) for pre-tRNA 5'-end processing in organelles and the nucleus and are thought to have replaced the ribonucleoprotein RNase P variant. However, the evolution and function of plant PRORPs are not fully under...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 1992